1 Make r the subject of the formula $A=\pi r^{2}(x+y)$, where $r>0$.

2 Fig. 8 shows a right-angled triangle with base $2 x+1$, height h and hypotenuse $3 x$.

Fig. 8
(i) Show that $h^{2}=5 x^{2}-4 x-1$.
(ii) Given that $h=\sqrt{7}$, find the value of x, giving your answer in surd form.

3 (i) Find the set of values of k for which the line $y=2 x+k$ intersects the curve $y=3 x^{2}+12 x+13$ at two distinct points.
(ii) Express $3 x^{2}+12 x+13$ in the form $a(x+b)^{2}+c$. Hence show that the curve $y=3 x^{2}+12 x+13$ lies completely above the x-axis.
(iii) Find the value of k for which the line $y=2 x+k$ passes through the minimum point of the curve $y=3 x^{2}+12 x+13$.

4 Make a the subject of $3(a+4)=a c+5 f$.

5 Find the coordinates of the point of intersection of the lines $y=3 x-2$ and $x+3 y=1$.

6 Express $3 x^{2}-12 x+5$ in the form $a(x-b)^{2}-c$. Hence state the minimum value of y on the curve $y=3 x^{2}-12 x+5$

7 Simplify $\frac{\left(4 x^{5} y\right)^{3}}{\left(2 x y^{2}\right) \times\left(8 x^{10} y^{4}\right)}$.

8 You are given that $\mathrm{f}(x)=x^{2}+k x+c$.
Given also that $\mathrm{f}(2)=0$ and $\mathrm{f}(-3)=35$, find the values of the constants k and c.

9 Rearrange the equation $5 c+9 t=a(2 c+t)$ to make c the subject.

10 Factorise and hence simplify the following expression.

$$
\frac{x^{2}-9}{x^{2}+5 x+6}
$$

[3]

11 Rearrange the following equation to make h the subject.

$$
\begin{equation*}
4 h+5=9 a-h a^{2} \tag{3}
\end{equation*}
$$

